Change of variables in integrals

Let ˆK and K be two open set of Rd. Let φ be a C1-diffeomorphism from ˆK to K, i.e. a bijection of class C1 whose reciprocal is also of class C1. Denote (e1,,ed) the canonical basis of Rd.

We have

φ:ˆx=di=1ˆxieiφ(ˆx)=di=1φi(ˆx1,,ˆxd)ei

The jacobian matrix of φ at a point ˆx, denote Jφ(ˆx) is the matrix of size d×d such that its entries read:

(Jφ(ˆx))ij=φiˆxj(ˆx1,,ˆxd)1i,jd

We have the following formula for the change of variable to compute an integral over K as an integral over ˆK

Ku(x)dx=ˆKu(φ(ˆx))|detJφ(ˆx)|dˆx
In the finite element method we have often to compute integrals using change of variables of the type KHu(x)dx, where H is an operator (gradient, laplacian, …​). You then have to use to be careful when applying the change of variables.
K(u(x))2dx=K[(u(x,y)x)2+(u(x,y)y)2]dxdy=ˆK[(u(F(ˆx,ˆy))x)2+(u(F(ˆx,ˆy))y)2]|detJF(ˆx)|dˆxdˆy=ˆK[(u(F(ˆx,ˆy))ˆxˆxx+u(F(ˆx,ˆy))ˆyˆyx)2+(u(F(ˆx,ˆy))ˆxˆxy+u(F(ˆx,ˆy))ˆyˆyy)2]|detJF(ˆx)|dˆxdˆy
ˆK[(ˆu(ˆx,ˆy)ˆxˆxx+ˆu(ˆx,ˆy)ˆyˆyx)2+(ˆu(ˆx,ˆy)ˆxˆxy+ˆu(ˆx,ˆy)ˆyˆyy)2]|detJF(ˆx)|dˆxdˆy

In the case the transformation F is affine, for example

{x=aˆx+bˆy+ey=cˆx+dˆy+f

we have

ˆx=d(xe)b(yf)D,ˆy=c(xe)+a(yf)D,|detJF(ˆx)|=D=adbc

The previous calculus becomes

K(u(x))2dx=ˆK[(ˆu(ˆx,ˆy)ˆxdD+ˆu(ˆx,ˆy)ˆycD)2+(ˆu(ˆx,ˆy)ˆxbD+ˆu(ˆx,ˆy)ˆyaD)2]|D|dˆxdˆy=1|D|ˆK[(dˆu(ˆx,ˆy)ˆxcˆu(ˆx,ˆy)ˆy)2+(bˆu(ˆx,ˆy)ˆx+aˆu(ˆx,ˆy)ˆy)2]dˆxdˆy

1. Some change of variable formulas

Denote f:KR and ˆf:ˆKR such that ˆf=fχe and F:KRd and ˆF:ˆKRd such that ˆF=Fχe.

Moreover denote n the local outward normal to Ω and n the local outward normal to ˆΩ.

we have the following relations

K f dx =ˆKf(χe(ξ))Je(ξ) dξ = ˆKˆf(ξ)Je(ξ) dξK f dx = ˆK(stˆf(ξ)fχe(ξ)Be(ξ))Je(ξ) dξK f(x) dx=ˆKˆf(ξ) Be(ξ) nst(ξ) Je(ξ) dξK F(x)  n(x)dx=ˆKˆF(ξ) (Be(ξ) nst(ξ)) Je(ξ) dξ

where

Be(ξ)=(χe(ξ))TJe(ξ)=det(χe(ξ))