Change of variables in integrals
Let ˆK and K be two open set of Rd. Let φ be a C1-diffeomorphism from ˆK to K, i.e. a bijection of class C1 whose reciprocal is also of class C1. Denote (e1,…,ed) the canonical basis of Rd.
We have
φ:ˆx=d∑i=1ˆxiei⟶φ(ˆx)=d∑i=1φi(ˆx1,…,ˆxd)ei
The jacobian matrix of φ at a point ˆx, denote Jφ(ˆx) is the matrix of size d×d such that its entries read:
(Jφ(ˆx))ij=∂φi∂ˆxj(ˆx1,…,ˆxd)1≤i,j≤d
We have the following formula for the change of variable to compute an integral over K as an integral over ˆK
∫Ku(x)dx=∫ˆKu(φ(ˆx))|detJφ(ˆx)|dˆx
In the finite element method we have often to compute integrals using change of variables of the type ∫KHu(x)dx, where H is an operator (gradient, laplacian, …). You then have to use to be careful when applying the change of variables. |
∫K(∇u(x))2dx=∫K[(∂u(x,y)∂x)2+(∂u(x,y)∂y)2]dxdy=∫ˆK[(∂u(F(ˆx,ˆy))∂x)2+(∂u(F(ˆx,ˆy))∂y)2]|detJF(ˆx)|dˆxdˆy=∫ˆK[(∂u(F(ˆx,ˆy))∂ˆx∂ˆx∂x+∂u(F(ˆx,ˆy))∂ˆy∂ˆy∂x)2+(∂u(F(ˆx,ˆy))∂ˆx∂ˆx∂y+∂u(F(ˆx,ˆy))∂ˆy∂ˆy∂y)2]|detJF(ˆx)|dˆxdˆy
∫ˆK[(∂ˆu(ˆx,ˆy)∂ˆx∂ˆx∂x+∂ˆu(ˆx,ˆy)∂ˆy∂ˆy∂x)2+(∂ˆu(ˆx,ˆy)∂ˆx∂ˆx∂y+∂ˆu(ˆx,ˆy)∂ˆy∂ˆy∂y)2]|detJF(ˆx)|dˆxdˆy
In the case the transformation F is affine, for example
{x=aˆx+bˆy+ey=cˆx+dˆy+f
we have
ˆx=d(x−e)−b(y−f)D,ˆy=−c(x−e)+a(y−f)D,|detJF(ˆx)|=D=ad−bc
The previous calculus becomes
∫K(∇u(x))2dx=∫ˆK[(∂ˆu(ˆx,ˆy)∂ˆxdD+∂ˆu(ˆx,ˆy)∂ˆy−cD)2+(∂ˆu(ˆx,ˆy)∂ˆx−bD+∂ˆu(ˆx,ˆy)∂ˆyaD)2]|D|dˆxdˆy=1|D|∫ˆK[(d∂ˆu(ˆx,ˆy)∂ˆx−c∂ˆu(ˆx,ˆy)∂ˆy)2+(−b∂ˆu(ˆx,ˆy)∂ˆx+a∂ˆu(ˆx,ˆy)∂ˆy)2]dˆxdˆy
1. Some change of variable formulas
Denote f:K↦R and ˆf:ˆK↦R such that ˆf=f∘χe and F:K↦Rd and ˆF:ˆK↦Rd such that ˆF=F∘χe.
Moreover denote n the local outward normal to Ω and n the local outward normal to ˆΩ.
we have the following relations
∫K f dx =∫ˆKf(χe(ξ))Je(ξ) dξ = ∫ˆKˆf(ξ)Je(ξ) dξ∫K ∇f dx = ∫ˆK(∇stˆf(ξ)⏟f∘χe(ξ)Be(ξ))Je(ξ) dξ∫∂K f(x) dx=∫∂ˆKˆf(ξ) ‖Be(ξ) nst(ξ)‖ Je(ξ) dξ∫∂K F(x) ⋅ n(x)dx=∫∂ˆKˆF(ξ) ⋅(Be(ξ) nst(ξ)) Je(ξ) dξ
where
Be(ξ)=(∇χe(ξ))−TJe(ξ)=det(∇χe(ξ))